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Point of observation

Figures © Stephen E. Palmer, 2002 

3D world 2D image 

What do we lose in perspective projection? 
• Angles 

• Distances and lengths 

•Dimensionality reduction 

Why is image understanding difficult? 



Image source: F. Durand 

•Dimensionality reduction 

Why is image understanding difficult? 

The same 2D image can correspond to different 

3D scenes 



•Variability: interclass variability of appearance 

Why is image understanding difficult? 



Xu, Beihong 1943 Slide credit: Fei-Fei,  Fergus & Torralba  

•Variability: deformations and occlusions 

Why is image understanding difficult? 



Michelangelo 1475-1564 

slide credit: Fei-Fei, Fergus & Torralba  

•Variability: different viewpoints 

Why is image understanding difficult? 



image credit: J. Koenderink 

•Variability: different lighting 

Why is image understanding difficult? 



Reducing variability by using local cues 
•Motivation: stitching panoramas 
• Find distinctive points 

• Find an alignment that matches these points 



Reducing variability by using local cues 
•Motivation: stereo matching 



Slide creit: S. Lazebnik 

Reducing variability by using local cues 
•Motivation:  image retrieval object detection  



•Local features and descriptors 

• Feature detectors 

– Harris-Laplace 

– LoG 

– DoG 

– Dense sampling 

• Descriptors 

– SIFT 

– Shape context 

– HOG 

– Pixel comparison 

 

 

Learning local models from local cues 



•Combining different descriptors 
Learning local models from local cues 



Learning methods: 

• SVM 

• Boosting 

• Random Forests 

• …… 

 

Learned model 

Output of 

the model 

Unseen data 

instance 

•Learning models from the data 
Learning local models from local cues 

Data 



• 'Local' has been the 
dominant paradigm in 
computer vision till the 
2000s 

 

• Works notoriously well for 
detection of rigid objects, e. 
g. faces  

 [Viola, Jones, 2001],  

 [Dalal, Triggs, 2005] 

 

 

 

 

 

 

•Example: object detection using sliding window 
Learning local models from local cues 
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Detection 
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Detections 

Missed 
Missed 
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Detections 

Local Detector: [Dalal-Triggs 2005] 

•Let’s have a closer look at the results 
Learning local models from local cues 

Slide credit: Alyosha Efros 



•What the detector sees 
Learning local models from local cues 

Slide credit: Alyosha Efros 



Slide credit: Fei-Fei, Fergus & Torralba  

•Local ambiguity 
Learning local models from local cues 
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•The role of context 
Learning local models from local cues 

Slide credit: Fei-Fei, Fergus & Torralba  



•The role of context 
Learning local models from local cues 

Slide credit: Fei-Fei, Fergus & Torralba  



Constraints of the world 

20 

• Similar appearance of 
similar objects 

• Limited number of allowed 
deformations of the 
objects in 3d 

• Depth ordering and 
occlusions 

• Rules of perspective 
projection 

• …. 
 

 

Chaotic world 

Structured world 

•The world is structured, not everything is possible 

Local cues 

Global 

constraints 



Constraints of the world 
• Limited set of allowed deformations for the objects 

Dali, 1931 



Magritte, 1957  

slide credit: Fei-Fei, Fergus & Torralba  

Constraints of the world 
• Occlusions 



Slide credit: J. Koenderink 

Constraints of the world 
• Depth ordering 



Constraints of the world 
• Rules of perspective geometry 



• The idea of graphical models 

 

• Examples:  

– Limiting the set of allowed 
deformations 

– Occlusion constraint 

– Depth ordering constraint 

– Modeling the rules of 
perspective geometry 

 

Expressing constraints  
with graphical models 

• Outline of the talk 



• The idea of graphical models 
 

• Examples:  
– Limiting the set of allowed 

deformations 
– Occlusion constraint 
– Depth ordering constraint 
– Modeling the rules of perspective 

geometry 
 

Expressing constraints  
with graphical models 

• Outline of the talk 



• Graphical representation of probability distributions 
• Graph-based algorithms for calculation and computation 
• Capture both local cues and global constraints by modeling dependencies 

between random variables 

• Graphical models 

Expressing constraints  
with graphical models 

Picture credit: C. Bishop 



•Each node corresponds to a random 
variable 

•Dependent variables are connected 
with edges 

 

•Clique - fully connected set of nodes in 
the graph 

•Maximal clique - a clique that is not a 
subset of any other cliques 

p(x1, x4| x2, x3) =  

= p(x1| x2, x3) p(x4| x2, x3) 

Graphical models 
• Graph representation 

Picture credit: C. Bishop 



Joint distribution of all random variables can be written as a 
product of nonnegative potentials defined on maximal 
cliques: 
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Graphical models 
• Joint distribution and potentials 
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Maximum a-posteriori (MAP) inference - find the values of 
all variables in the graphical model that maximize the joint 
probability 

arg min ( )C C

C

E X Energy function:  E(X) = logP(x) =  

Graphical models 
• MAP-inference and energy function 

x1 = 1 x2 = 0 

x3 = 1 x4 = 1 

MAP-inference = energy minimization 



• Many computationally efficient methods for inference in 
graphical models have been developed: 
– graph cuts 
– TRW 
– belief propagation 
– expectation propagation 
– MCMC 
– …. 

• All these methods have limitations and can be used to 
minimize energy functions of specific forms  the art is to 
find tradeof between flexibility and tractability  

Graphical models 
• Methods for MAP-inference 


