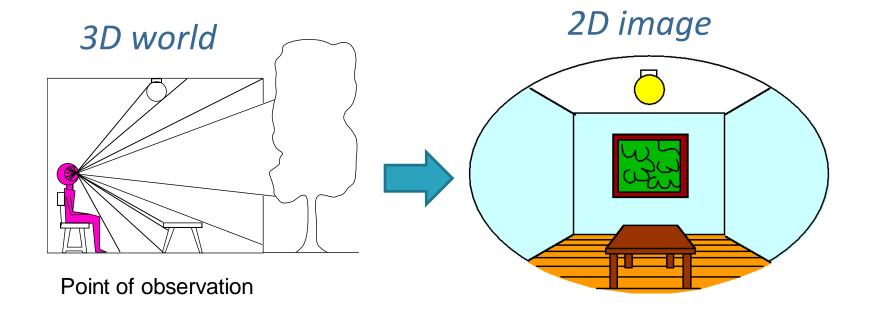
Research

Graphical models in image understanding

Olga Barinova

Lomonosov Moscow State University Thanks to Anton Konushin for some slides

Dimensionality reduction



What do we lose in perspective projection?

- Angles
- Distances and lengths

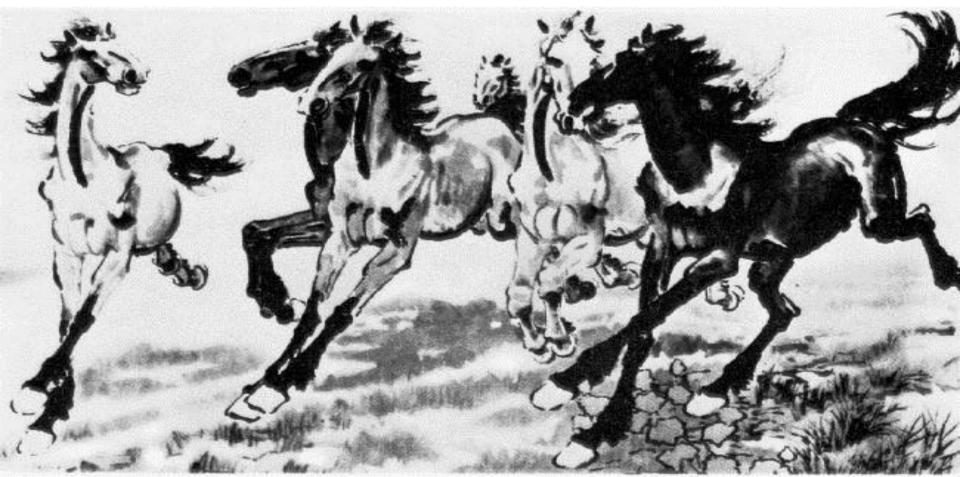
Research Why is image understanding difficult

- Dimensionality reduction
 - The same 2D image can correspond to different 3D scenes

Research Why is image understanding difficult

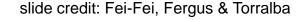
•Variability: interclass variability of appearance

•Variability: deformations and occlusions

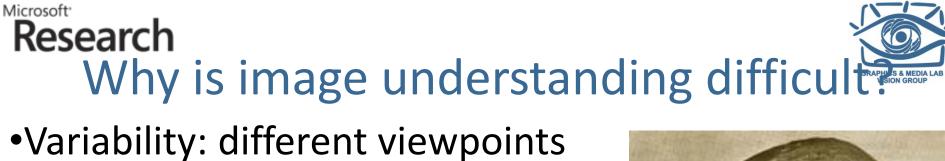


Xu, Beihong 1943

Slide credit: Fei-Fei, Fergus & Torralba



Michelangelo 1475-1564



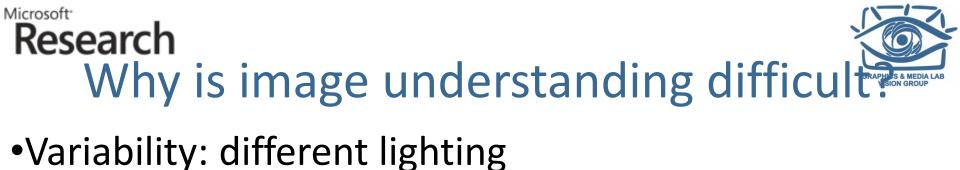


image credit: J. Koenderink

Reducing variability by using local cues

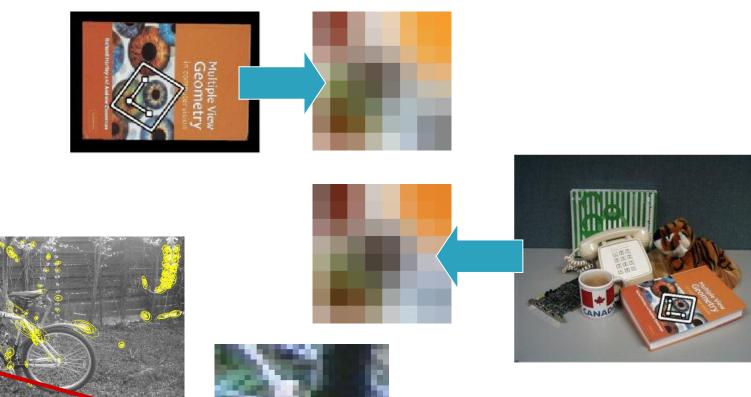
- •Motivation: stitching panoramas
 - Find distinctive points
 - Find an alignment that matches these points

Reducing variability by using local cues

Motivation: stereo matching

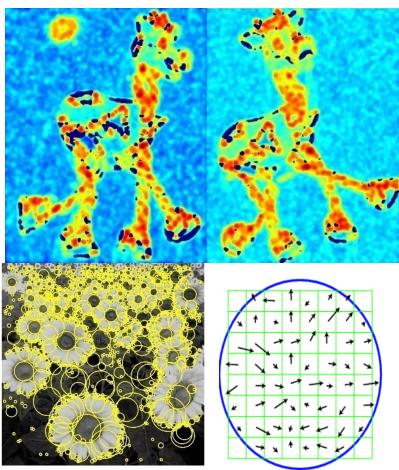
Reducing variability by using local cues

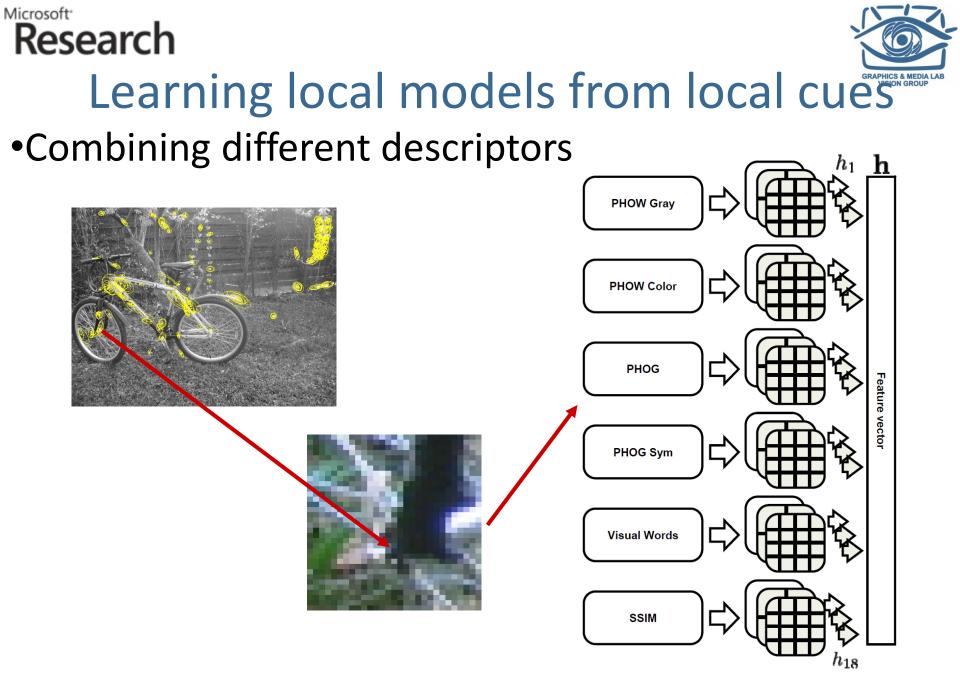
•Motivation: image retrieval object detection



Research Learning local models from local cues

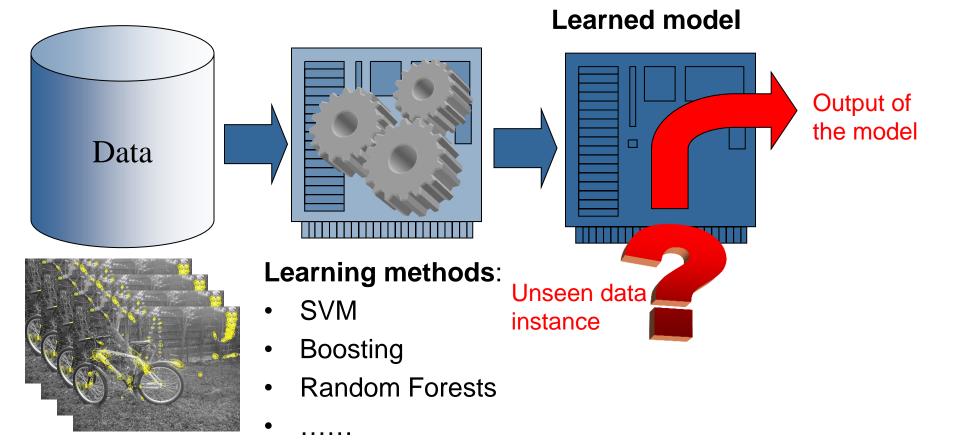
- Local features and descriptors
 - Feature detectors
 - Harris-Laplace
 - LoG
 - DoG
 - Dense sampling
 - Descriptors
 - SIFT
 - Shape context
 - HOG
 - Pixel comparison





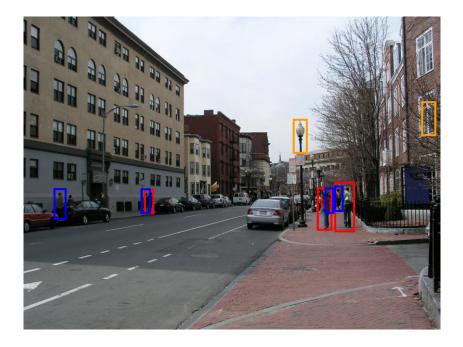
Learning local models from local cues

•Learning models from the data



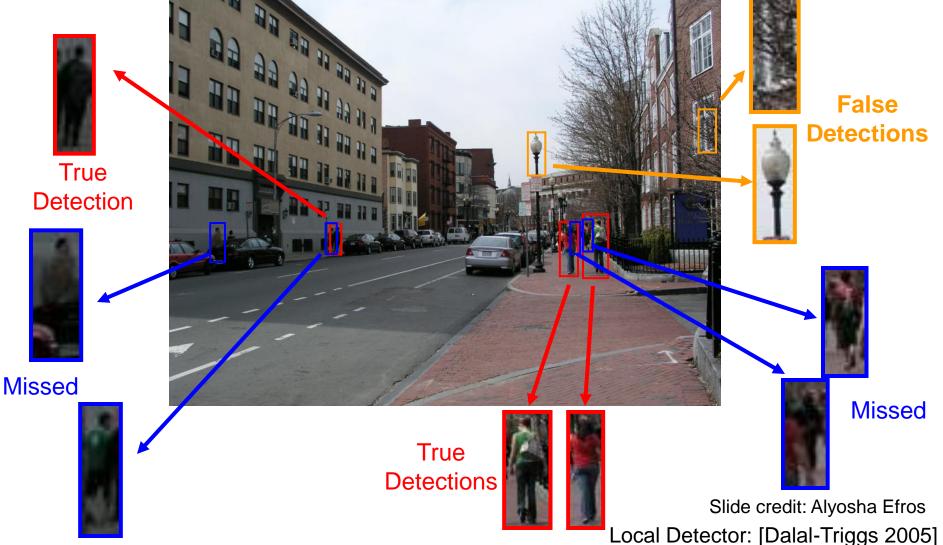
Research Learning local models from local cues •Example: object detection using sliding window

- 'Local' has been the dominant paradigm in computer vision till the 2000s
- Works notoriously well for detection of rigid objects, e.
 g. faces
 [Viola, Jones, 2001],
 [Dalal, Triggs, 2005]



Learning local models from local cues

•Let's have a closer look at the results



Research

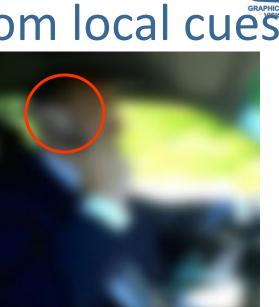
Learning local models from local cues

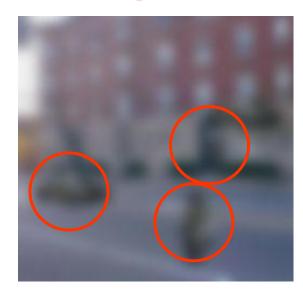
•What the detector sees

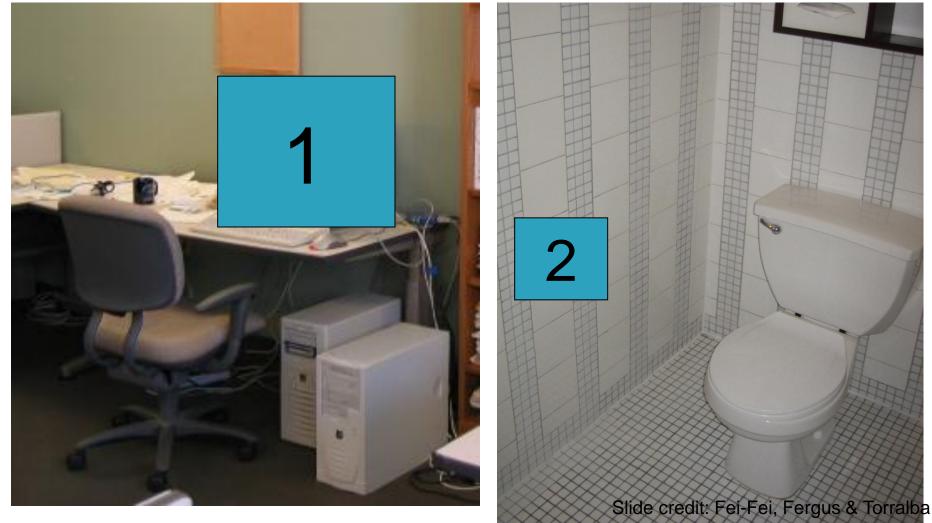
Slide credit: Alyosha Efros

Research Learning local models from local cues

Local ambiguity







•The world is structured, not everything is possible

Local cues

- Similar appearance of similar objects
- Limited number of allowed deformations of the objects in 3d

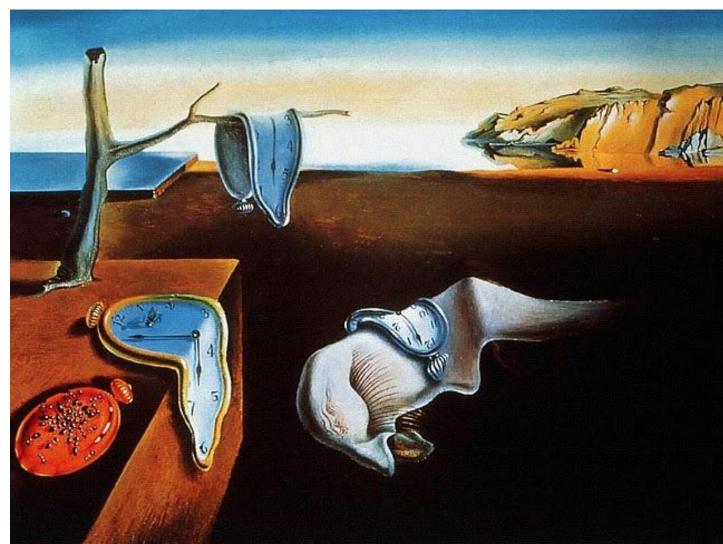
Global constraints

- Depth ordering and occlusions
- Rules of perspective projection

Chaotic world

Structured world

• Limited set of allowed deformations for the objects

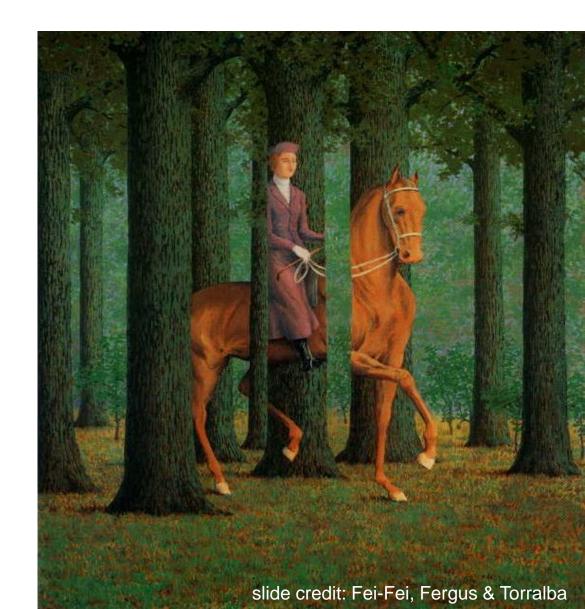


Dali, 1931

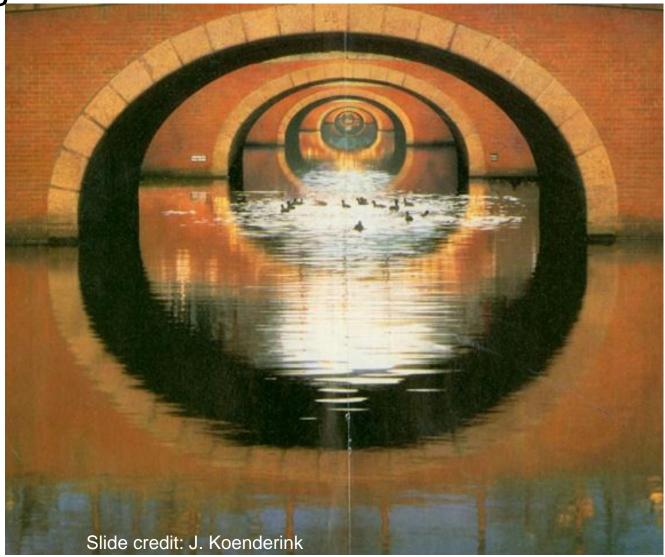
Occlusions

Microsoft[®]

Magritte, 1957



Depth ordering

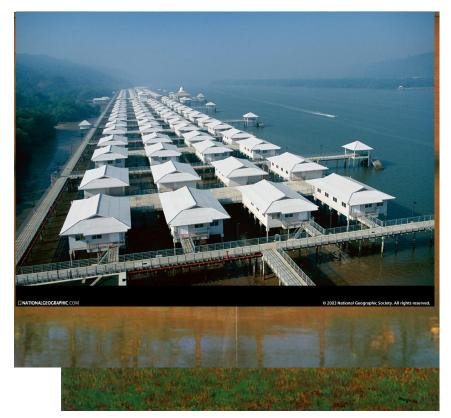


• Rules of perspective geometry

Research

Expressing constraints with graphical models

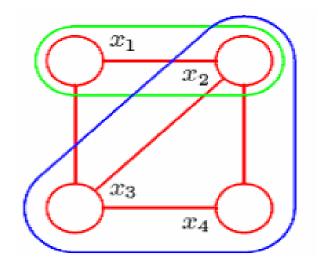
- Outline of the talk
 - The idea of graphical models
 - Examples:
 - Limiting the set of allowed deformations
 - Occlusion constraint
 - Depth ordering constraint
 - Modeling the rules of perspective geometry



Research

Expressing constraints with graphical models

- Outline of the talk
 - The idea of graphical models
 - Examples:
 - Limiting the set of allowed deformations
 - Occlusion constraint
 - Depth ordering constraint
 - Modeling the rules of perspective geometry

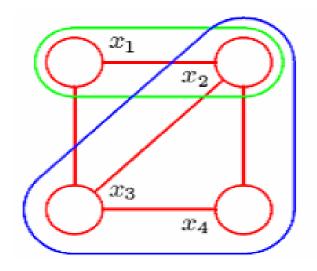


Expressing constraints Research with graphical models

Graphical models

Microsoft[®]

- Graphical representation of probability distributions
- Graph-based algorithms for calculation and computation
- Capture both local cues and global constraints by modeling dependencies between random variables



Picture credit: C. Bishop

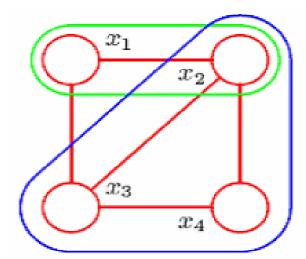
Graph representation

•Each node corresponds to a **random variable**

•Dependent variables are connected with edges

Clique - fully connected set of nodes in the graph
Maximal clique - a clique that is not a

subset of any other cliques



$$p(x_1, x_4 | x_2, x_3) =$$

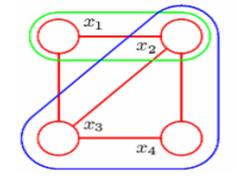
= $p(x_1 | x_2, x_3) p(x_4 | x_2, x_3)$

• Joint distribution and potentials

Joint distribution of all random variables can be written as a product of nonnegative **potentials** defined on maximal cliques:

$$p(X) = \frac{1}{Z} \prod_{C} \psi_{C}(X_{C}) \qquad Z = \sum_{X} \prod_{C} \psi_{C}(X_{C}), \quad \psi_{C}(X_{C}) \ge 0$$

$$p(X) = \frac{1}{Z} \psi_1(x_1, x_2, x_3) \psi_2(x_2, x_3, x_4)$$



• MAP-inference and energy function

Maximum a-posteriori (MAP) inference - find the values of all variables in the graphical model that maximize the joint probability $x_1 = 1$ $x_2 = 0$

arg max
$$p(X) = \arg \max \frac{1}{Z} \prod_{C} \psi_{C}(X_{C}) =$$

 $= \arg \max \exp\left(-\sum_{C} E_{C}(X_{C})\right) =$
 $= \arg \min \sum_{C} E_{C}(X_{C})$
Energy function: $E(X) = logP(x) = \sum_{C} E_{C}(X_{C})$
 $x_{1} = 1$
 $x_{2} = 0$
 $x_{3} = 1$
 $x_{4} = 1$

MAP-inference = energy minimization

- Methods for MAP-inference
 - Many computationally efficient methods for inference in graphical models have been developed:
 - graph cuts
 - TRW
 - belief propagation
 - expectation propagation
 - MCMC

 All these methods have limitations and can be used to minimize energy functions of specific forms → the art is to find tradeof between flexibility and tractability

^{-}